Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Med Sci (Paris) ; 39(10): 722-731, 2023 Oct.
Artículo en Francés | MEDLINE | ID: mdl-37943132

RESUMEN

Brucellosis due to Brucella melitensis affects domestic and wild ruminants, as well as other mammals, including humans. Despite France being officially free of bovine brucellosis since 2005, two human cases of Brucella melitensis infection in the French Alps in 2012 led to the discovery of one infected cattle herd and of one infected population of wild Alpine ibex (Capra ibex). In this review, we present the results of 10 years of research on the epidemiology of brucellosis in this population of Alpine ibex. We also discuss the insights brought by research and expert assessments on the efficacy of disease management strategies used to mitigate brucellosis in the French Alps.


Title: La brucellose du bouquetin des Alpes - Un exemple de dix années de recherche et d'expertise. Abstract: La brucellose à Brucella melitensis touche les ruminants domestiques et sauvages, ainsi que d'autres mammifères, dont les humains. Bien que la France soit officiellement indemne depuis 2005, deux cas humains reportés en Haute-Savoie en 2012 ont conduit à la découverte de l'infection dans un élevage bovin et chez les bouquetins des Alpes (Capra ibex) du massif du Bargy. Nous présentons dans cette synthèse les principales découvertes de ces dix dernières années sur le système brucellose-bouquetins. Nous discuterons également de l'apport de la recherche et de l'expertise sur l'évaluation de l'efficacité des mesures de gestion sanitaire mises en place dans le massif du Bargy pour lutter contre la brucellose.


Asunto(s)
Brucelosis , Humanos , Animales , Bovinos , Brucelosis/epidemiología , Brucelosis/veterinaria , Cabras , Francia/epidemiología
2.
Vet Res ; 54(1): 96, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853425

RESUMEN

The global spread of avian influenza A viruses in domestic birds is causing increasing socioeconomic devastation. Various mechanistic models have been developed to better understand avian influenza transmission and evaluate the effectiveness of control measures in mitigating the socioeconomic losses caused by these viruses. However, the results of models of avian influenza transmission and control have not yet been subject to a comprehensive review. Such a review could help inform policy makers and guide future modeling work. To help fill this gap, we conducted a systematic review of the mechanistic models that have been applied to field outbreaks. Our three objectives were to: (1) describe the type of models and their epidemiological context, (2) list estimates of commonly used parameters of low pathogenicity and highly pathogenic avian influenza transmission, and (3) review the characteristics of avian influenza transmission and the efficacy of control strategies according to the mechanistic models. We reviewed a total of 46 articles. Of these, 26 articles estimated parameters by fitting the model to data, one evaluated the effectiveness of control strategies, and 19 did both. Values of the between-individual reproduction number ranged widely: from 2.18 to 86 for highly pathogenic avian influenza viruses, and from 4.7 to 45.9 for low pathogenicity avian influenza viruses, depending on epidemiological settings, virus subtypes and host species. Other parameters, such as the durations of the latent and infectious periods, were often taken from the literature, limiting the models' potential insights. Concerning control strategies, many models evaluated culling (n = 15), while vaccination received less attention (n = 6). According to the articles reviewed, optimal control strategies varied between virus subtypes and local conditions, and depended on the overall objective of the intervention. For instance, vaccination was optimal when the objective was to limit the overall number of culled flocks. In contrast, pre-emptive culling was preferred for reducing the size and duration of an epidemic. Early implementation consistently improved the overall efficacy of interventions, highlighting the need for effective surveillance and epidemic preparedness.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Gripe Aviar/epidemiología , Aves de Corral , Brotes de Enfermedades/veterinaria , Animales Domésticos
3.
Vet Res ; 54(1): 56, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430292

RESUMEN

We analysed the interplay between palmiped farm density and the vulnerability of the poultry production system to highly pathogenic avian influenza (HPAI) H5N8. To do so, we used a spatially-explicit transmission model, which was calibrated to reproduce the observed spatio-temporal distribution of outbreaks in France during the 2016-2017 epidemic of HPAI. Six scenarios were investigated, in which the density of palmiped farms was decreased in the municipalities with the highest palmiped farm density. For each of the six scenarios, we first calculated the spatial distribution of the basic reproduction number (R0), i.e. the expected number of farms a particular farm would be likely to infect, should all other farms be susceptible. We also ran in silico simulations of the adjusted model for each scenario to estimate epidemic sizes and time-varying effective reproduction numbers. We showed that reducing palmiped farm density in the densest municipalities decreased substantially the size of the areas with high R0 values (> 1.5). In silico simulations suggested that reducing palmiped farm density, even slightly, in the densest municipalities was expected to decrease substantially the number of affected poultry farms and therefore provide benefits to the poultry sector as a whole. However, they also suggest that it would not have been sufficient, even in combination with the intervention measures implemented during the 2016-2017 epidemic, to completely prevent the virus from spreading. Therefore, the effectiveness of alternative structural preventive approaches now needs to be assessed, including flock size reduction and targeted vaccination.


Asunto(s)
Subtipo H5N8 del Virus de la Influenza A , Gripe Aviar , Animales , Gripe Aviar/epidemiología , Gripe Aviar/prevención & control , Granjas , Aves de Corral , Francia/epidemiología
4.
Front Med (Lausanne) ; 10: 1092030, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960338

RESUMEN

Hookworm disease is a major global public health concern, annually affecting 500-700 million of the world's poorest people. The World Health Organization is targeting the elimination of hookworm as a public health problem by 2030 using a strategy of mass drug administration (MDA) to at-risk human populations. However, in Southeast Asia and the Pacific the zoonotic hookworm species, Ancylostoma ceylanicum, is endemic in dogs and commonly infects people. This presents a potential impediment to the effectiveness of MDA that targets only humans. Here, we develop a novel multi-host (dog and human) transmission model of A. ceylanicum and compare the effectiveness of human-only and "One Health" (human plus dog) MDA strategies under a range of eco-epidemiological assumptions. We show that One Health interventions-targeting both dogs and humans-could suppress prevalence in humans to ≤ 1% by the end of 2030, even with only modest coverage (25-50%) of the animal reservoir. With increasing coverage, One Health interventions may even interrupt transmission. We discuss key unresolved questions on the eco-epidemiology of A. ceylanicum, the challenges of delivering MDA to animal reservoirs, and the growing importance of One Health interventions to human public health.

5.
Transbound Emerg Dis ; 69(6): 3160-3166, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36197436

RESUMEN

The spread of highly pathogenic avian influenza (HPAI) viruses worldwide has serious consequences for animal health and a major economic impact on the poultry production sector. Since 2014, Europe has been severely hit by several HPAI epidemics, with France being the most affected country. Most recently, France was again affected by two devastating HPAI epidemics in 2020-21 and 2021-22. We conducted a descriptive analysis of the 2020-21 and 2021-22 epidemics, as a first step towards identifying the poultry sector's remaining vulnerabilities regarding HPAI viruses in France. We examined the spatio-temporal distribution of outbreaks that occurred in France in 2020-21 and 2021-22, and we assessed the outbreaks' spatial distribution in relation to the 2016-17 epidemic and to the two 'high-risk zones' recently incorporated into French legislation to strengthen HPAI prevention and control. There were 468 reported outbreaks during the 2020-21 epidemic and 1375 outbreaks during the 2021-22 epidemic. In both epidemics, the outbreaks' distribution matched extremely well that of 2016-17, and most outbreaks (80.6% and 68.4%) were located in the two high-risk zones. The southwestern high-risk zone was affected in both epidemics, while the western high-risk zone was affected for the first time in 2021-22, explaining the extremely high number of outbreaks reported. As soon as the virus reached the high-risk zones, it started to spread between farms at very high rates, with each infected farm infecting between two and three other farms at the peaks of transmission. We showed that the spatial distribution model used to create the two high-risk zones was able to predict the location of outbreaks for the 2020-21 and 2021-22 epidemics. These zones were characterized by high poultry farm densities; future efforts should, therefore, focus on reducing the density of susceptible poultry in highly dense areas.


Asunto(s)
Epidemias , Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N8 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Aves de Corral , Brotes de Enfermedades/veterinaria , Epidemias/veterinaria , Francia/epidemiología , Enfermedades de las Aves de Corral/epidemiología
6.
Epidemics ; 40: 100615, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35970067

RESUMEN

Robust epidemiological knowledge and predictive modelling tools are needed to address challenging objectives, such as: understanding epidemic drivers; forecasting epidemics; and prioritising control measures. Often, multiple modelling approaches can be used during an epidemic to support effective decision making in a timely manner. Modelling challenges contribute to understanding the pros and cons of different approaches and to fostering technical dialogue between modellers. In this paper, we present the results of the first modelling challenge in animal health - the ASF Challenge - which focused on a synthetic epidemic of African swine fever (ASF) on an island. The modelling approaches proposed by five independent international teams were compared. We assessed their ability to predict temporal and spatial epidemic expansion at the interface between domestic pigs and wild boar, and to prioritise a limited number of alternative interventions. We also compared their qualitative and quantitative spatio-temporal predictions over the first two one-month projection phases of the challenge. Top-performing models in predicting the ASF epidemic differed according to the challenge phase, host species, and in predicting spatial or temporal dynamics. Ensemble models built using all team-predictions outperformed any individual model in at least one phase. The ASF Challenge demonstrated that accounting for the interface between livestock and wildlife is key to increasing our effectiveness in controlling emerging animal diseases, and contributed to improving the readiness of the scientific community to face future ASF epidemics. Finally, we discuss the lessons learnt from model comparison to guide decision making.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Epidemias , Fiebre Porcina Africana/epidemiología , Animales , Animales Salvajes , Sus scrofa , Porcinos
7.
Epidemics ; 40: 100622, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36041286

RESUMEN

African swine fever (ASF), caused by the African swine fever virus (ASFV), is highly virulent in domestic pigs and wild boar (Sus scrofa), causing up to 100% mortality. The recent epidemic of ASF in Europe has had a serious economic impact and poses a threat to global food security. Unfortunately, there is no effective treatment or vaccine against ASFV, limiting the available disease management strategies. Mathematical models allow us to further our understanding of infectious disease dynamics and evaluate the efficacy of disease management strategies. The ASF Challenge, organised by the French National Research Institute for Agriculture, Food, and the Environment, aimed to expand the development of ASF transmission models to inform policy makers in a timely manner. Here, we present the model and associated projections produced by our team during the challenge. We developed a stochastic model combining transmission between wild boar and domestic pigs, which was calibrated to synthetic data corresponding to different phases describing the epidemic progression. The model was then used to produce forward projections describing the likely temporal evolution of the epidemic under various disease management scenarios. Despite the interventions implemented, long-term projections forecasted persistence of ASFV in wild boar, and hence repeated outbreaks in domestic pigs. A key finding was that it is important to consider the timescale over which different measures are evaluated: interventions that have only limited effectiveness in the short term may yield substantial long-term benefits. Our model has several limitations, partly because it was developed in real-time. Nonetheless, it can inform understanding of the likely development of ASF epidemics and the efficacy of disease management strategies, should the virus continue its spread in Europe.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/prevención & control , Animales , Manejo de la Enfermedad , Europa (Continente)/epidemiología , Sus scrofa , Porcinos
8.
J Travel Med ; 29(3)2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35325195

RESUMEN

BACKGROUND: A rapid, accurate, non-invasive diagnostic screen is needed to identify people with SARS-CoV-2 infection. We investigated whether organic semi-conducting (OSC) sensors and trained dogs could distinguish between people infected with asymptomatic or mild symptoms, and uninfected individuals, and the impact of screening at ports-of-entry. METHODS: Odour samples were collected from adults, and SARS-CoV-2 infection status confirmed using RT-PCR. OSC sensors captured the volatile organic compound (VOC) profile of odour samples. Trained dogs were tested in a double-blind trial to determine their ability to detect differences in VOCs between infected and uninfected individuals, with sensitivity and specificity as the primary outcome. Mathematical modelling was used to investigate the impact of bio-detection dogs for screening. RESULTS: About, 3921 adults were enrolled in the study and odour samples collected from 1097 SARS-CoV-2 infected and 2031 uninfected individuals. OSC sensors were able to distinguish between SARS-CoV-2 infected individuals and uninfected, with sensitivity from 98% (95% CI 95-100) to 100% and specificity from 99% (95% CI 97-100) to 100%. Six dogs were able to distinguish between samples with sensitivity ranging from 82% (95% CI 76-87) to 94% (95% CI 89-98) and specificity ranging from 76% (95% CI 70-82) to 92% (95% CI 88-96). Mathematical modelling suggests that dog screening plus a confirmatory PCR test could detect up to 89% of SARS-CoV-2 infections, averting up to 2.2 times as much transmission compared to isolation of symptomatic individuals only. CONCLUSIONS: People infected with SARS-CoV-2, with asymptomatic or mild symptoms, have a distinct odour that can be identified by sensors and trained dogs with a high degree of accuracy. Odour-based diagnostics using sensors and/or dogs may prove a rapid and effective tool for screening large numbers of people.Trial Registration NCT04509713 (clinicaltrials.gov).


Asunto(s)
COVID-19 , Perros , Animales , Infecciones Asintomáticas , COVID-19/diagnóstico , Humanos , Tamizaje Masivo , SARS-CoV-2 , Sensibilidad y Especificidad , Compuestos Orgánicos Volátiles/análisis
9.
Epidemics ; 38: 100542, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35152060

RESUMEN

In wildlife, epidemiological data are often collected using cross-sectional surveys and antibody tests, and seroprevalence is the most common measure used to monitor the transmission dynamics of infectious diseases. On the contrary, the force of infection, a measure of transmission intensity that can help understand epidemiological dynamics and monitor management interventions, remains rarely used. The force of infection can be derived from age-stratified cross-sectional serological data, or from longitudinal data (although less frequently available in wildlife populations). Here, we combined seroprevalence and capture-mark-recapture data to estimate the force of infection of brucellosis in an Alpine ibex (Capra ibex) population monitored from 2012 to 2018. Because the seroprevalence of brucellosis was 38% in this population in 2012, managers conducted two culling operations in 2013 and 2015, as well as captures every year since 2012, where seronegative individuals were marked and released, and seropositive individuals were removed. We obtained two estimates of the force of infection and its changes across time, by fitting (i) a catalytic model to age-seroprevalence data obtained from unmarked animals (cross-sectional), and (ii) a survival model to event time data obtained from recaptures of marked animals (longitudinal). Using both types of data allowed us to make robust inference about the temporal dynamics of the force of infection: indeed, there was evidence for a decrease in the force of infection between mid-2014 and late 2015 in both datasets. The force of infection was estimated to be reduced from 0.115 year-1 [0.074-0.160] to 0.016 year-1 [0.001-0.057]. These results confirm that transmission intensity decreased during the study period, probably due to management interventions and natural changes in infection dynamics. Estimating the force of infection could therefore be a valuable complement to classical seroprevalence analyses to monitor the dynamics of wildlife diseases, especially in the context of ongoing disease management interventions.


Asunto(s)
Brucelosis , Animales , Animales Salvajes , Brucelosis/epidemiología , Estudios Transversales , Cabras , Estudios Seroepidemiológicos
10.
Vet Res ; 52(1): 116, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521471

RESUMEN

The management of infectious diseases in wildlife reservoirs is challenging and faces several limitations. However, detailed knowledge of host-pathogen systems often reveal heterogeneity among the hosts' contribution to transmission. Management strategies targeting specific classes of individuals and/or areas, having a particular role in transmission, could be more effective and more acceptable than population-wide interventions. In the wild population of Alpine ibex (Capra ibex-a protected species) of the Bargy massif (French Alps), females transmit brucellosis (Brucella melitensis) infection in ~90% of cases, and most transmissions occur in the central spatial units ("core area"). Therefore, we expanded an individual-based model, developed in a previous study, to test whether strategies targeting females or the core area, or both, would be more effective. We simulated the relative efficacy of realistic strategies for the studied population, combining test-and-remove (euthanasia of captured animals with seropositive test results) and partial culling of unmarked animals. Targeting females or the core area was more effective than untargeted management options, and strategies targeting both were even more effective. Interestingly, the number of ibex euthanized and culled in targeted strategies were lower than in untargeted ones, thus decreasing the conservation costs while increasing the sanitary benefits. Although there was no silver bullet for the management of brucellosis in the studied population, targeted strategies offered a wide range of promising refinements to classical sanitary measures. We therefore encourage to look for heterogeneity in other wildlife diseases and to evaluate potential strategies for improving management in terms of efficacy but also acceptability.


Asunto(s)
Brucella melitensis/fisiología , Brucelosis/veterinaria , Enfermedades de las Cabras/prevención & control , Animales , Animales Salvajes , Brucelosis/microbiología , Brucelosis/prevención & control , Femenino , Francia , Enfermedades de las Cabras/microbiología , Cabras , Masculino
11.
Microorganisms ; 9(8)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34442855

RESUMEN

Hybridization of infectious agents is a major emerging public and veterinary health concern at the interface of evolution, epidemiology, and control. Whilst evidence of the extent of hybridization amongst parasites is increasing, their impact on morbidity remains largely unknown. This may be predicted to be particularly pertinent where parasites of animals with contrasting pathogenicity viably hybridize with human parasites. Recent research has revealed that viable zoonotic hybrids between human urogenital Schistosoma haematobium with intestinal Schistosoma species of livestock, notably Schistosoma bovis, can be highly prevalent across Africa and beyond. Examining human populations in Senegal, we found increased hepatic but decreased urogenital morbidity, and reduced improvement following treatment with praziquantel, in those infected with zoonotic hybrids compared to non-hybrids. Our results have implications for effective monitoring and evaluation of control programmes, and demonstrate for the first time the potential impact of parasite hybridizations on host morbidity.

12.
Prev Vet Med ; 187: 105239, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33373957

RESUMEN

The monitoring of the disease prevalence in a population is an essential component of its adaptive management. However, field data often lead to biased estimates. This is the case for brucellosis infection of ibex in the Bargy massif (France). A test-and-cull program is being carried out in this area to manage the infection: captured animals are euthanized when seropositive, and marked and released when seronegative. Because this mountainous species is difficult to capture, field workers tend to focus the capture effort on unmarked animals. Indeed, marked animals are less likely to be infected, as they were controlled and negative during previous years. As the proportion of marked animals in the population becomes large, captured animals can no longer be considered as an unbiased sample of the population. We designed an integrated Bayesian model to correct this bias, by estimating the seroprevalence in the population as the combination of the separate estimates of the seroprevalence among unmarked animals (estimated from the data) and marked animals (estimated with a catalytic infection model, to circumvent the scarcity of the data). As seroprevalence may not be the most responsive parameter to management actions, we also estimated the proportion of animals in the population with an active bacterial infection. The actual infection status of captured animals was thus inferred as a function of their age and their level of antibodies, using a model based on bacterial cultures carried out for a sample of animals. Focusing on the population of adult females in the core area of the massif, i.e. with the highest seroprevalence, this observational study shows that seroprevalence has been divided by two between 2013 (51%) and 2018 (21%). Moreover, the likely estimated proportion of actively infected females in the same population, though very imprecise, has decreased from a likely estimate of 34% to less than 15%, suggesting that the management actions have been effective in reducing infection prevalence.


Asunto(s)
Brucelosis/veterinaria , Enfermedades de las Cabras/epidemiología , Cabras , Animales , Animales Salvajes , Teorema de Bayes , Brucelosis/epidemiología , Femenino , Francia/epidemiología , Masculino , Prevalencia , Estudios Seroepidemiológicos
13.
Sci Rep ; 8(1): 16846, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30442961

RESUMEN

Infectious diseases raise many concerns for wildlife and new insights must be gained to manage infected populations. Wild ungulates provide opportunities to gain such insights as they host many pathogens. Using modelling and data collected from an intensively monitored population of Pyrenean chamois, we investigated the role of stochastic processes in governing epidemiological patterns of pestivirus spread in both protected and hunted populations. We showed that demographic stochasticity led to three epidemiological outcomes: early infection fade-out, epidemic outbreaks with population collapse, either followed by virus extinction or by endemic situations. Without re-introduction, the virus faded out in >50% of replications within 4 years and did not persist >20 years. Test-and-cull of infected animals and vaccination had limited effects relative to the efforts devoted, especially in hunted populations in which only quota reduction somewhat improve population recovery. Success of these strategies also relied on the maintenance of a high level of surveillance of hunter-harvested animals. Our findings suggested that, while surveillance and maintenance of population levels at intermediate densities to avoid large epidemics are useful at any time, a 'do nothing' approach during epidemics could be the 'least bad' management strategy in populations of ungulates species facing pestivirus infection.


Asunto(s)
Animales Salvajes/fisiología , Demografía , Enfermedad , Animales , Análisis por Conglomerados , Francia , Geografía , Modelos Teóricos , Densidad de Población , España , Procesos Estocásticos
14.
Front Microbiol ; 9: 1065, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29892274

RESUMEN

Wildlife reservoirs of infectious diseases raise major management issues. In Europe, brucellosis has been eradicated in domestic ruminants from most countries and wild ruminants have not been considered important reservoirs so far. However, a high prevalence of Brucella melitensis infection has been recently identified in a French population of Alpine ibex (Capra ibex), after the emergence of brucellosis was confirmed in a dairy cattle farm and two human cases. This situation raised the need to identify the factors driving the persistence of Brucella infection at high prevalence levels in this ibex population. In the present paper, we studied the shedding pattern of B. melitensis in ibex from Bargy Massif, French Alps. Bacteriological examinations (1-15 tissues/samples per individual) were performed on 88 seropositive, supposedly infected and euthanized individuals. Among them, 51 (58%) showed at least one positive culture, including 45 ibex with at least one Brucella isolation from a urogenital sample or a lymph node in the pelvic area (active infection in organs in the pelvic area). Among these 45 ibex, 26 (30% of the total number of necropsied animals) showed at least one positive culture for a urogenital organ and were considered as being at risk of shedding the bacteria at the time of capture. We observed significant heterogeneity between sex-and-age classes: seropositive females were most at risk to excrete Brucella before the age of 5 years, possibly corresponding to abortion during the first pregnancy following infection such as reported in the domestic ruminants. The high shedding potential observed in young females may have contributed to the self-sustained maintenance of infection in this population, whereas males are supposed to play a role of transmission between spatial units through venereal transmission during mating. This heterogeneity in the shedding potential of seropositive individuals should be considered in the future to better evaluate management scenarios in this system as well as in others.

15.
J Wildl Dis ; 54(2): 335-341, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29148885

RESUMEN

Understanding the dynamics of host-pathogen interaction is key to the management of epidemics. A pestivirus belonging to the border disease virus group 4 emerged around 2001 in Pyrenean chamois ( Rupicapra pyrenaica) in Spain and France. The virus had significant demographic impact in some populations, but it was less harmful and more endemic in other places. The determinants of these local variations are still unclear. Here, we documented empirical evidence of self-clearance of the virus in a chamois population in France. This population has regularly been counted, and chamois were trapped and harvested each year, providing unique demographic and epidemiologic surveys of the population since 1984 and 1994, respectively. The virus was detected using direct (PCR) and indirect (antibody) testing. We showed that virus transmission declined in 2011-12 and likely ceased in 2013, leading to a decline in antibody prevalence since 2014. Self-clearance may be due to limited exchanges with other populations, decrease in population size after an epizootic, and herd immunity. The age structure of captured animals shifted to younger age classes after virus self-clearance, suggesting a return to a colonizing population structure. The possible consequences of virus re-entry are discussed. This observation suggests that pestivirus dynamics occurs at the scale of the metapopulation of Pyrenean chamois. Local self-clearance and re-emergence may help explain the variation of virus dynamics at the local scale.


Asunto(s)
Infecciones por Pestivirus/veterinaria , Pestivirus , Rupicapra/virología , Animales , Anticuerpos Antivirales/sangre , Francia/epidemiología , Infecciones por Pestivirus/epidemiología , Infecciones por Pestivirus/virología
16.
Opt Express ; 25(5): 4607-4620, 2017 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-28380732

RESUMEN

We investigate the interest of deep wet etching with HF/HNO3 or KOH solutions as a final step after polishing to improve fused silica optics laser damage resistance at the wavelength of 351 nm. This comparison is carried out on scratches engineered on high damage threshold polished fused silica optics. We evidence that both KOH and HF/HNO3 solutions are efficient to passivate scratches and thus improve their damage threshold up to the level of the polished surface. The effect of these wet etchings on surface roughness and aspect is also studied. We show that KOH solution exhibit better overall surface quality that HF/HNO3 solution in the tested conditions. Given the safety difficulties associated with the processing with HF, KOH solution appears as a pertinent alternative to HF deep wet etching.

17.
Gait Posture ; 34(3): 358-63, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21733695

RESUMEN

UNLABELLED: Motor control studies have shown that when walking is performed while resisting a perturbation applied to the lower limb, the muscle activation pattern can be temporarily modified. The objective of the present study is to validate if such an approach, targeting the ankle, could specifically promote an increased activation of the ankle dorsiflexor muscles that are of key importance for the rehabilitation of foot drop. METHODS: 12 adults, with no gait deficit, walked on a treadmill for three periods of 5min: before, during and after exposure to a torque perturbation applied by a robotized ankle-foot orthosis that tended to plantarflex the ankle during the swing phase. Spatiotemporal gait parameters, ankle and knee kinematics, and the electromyographic activity of five lower limb muscle groups were recorded. RESULTS: The perturbation initially caused a deviation of the ankle towards plantarflexion. This movement error was rapidly reduced and associated with a large increase (78.2%; p<0.001) in tibialis anterior (ankle dorsiflexor; TA) activation, specifically in the stance-to-swing burst. This increase carried over to post-perturbation walking, gradually disappearing over several strides. Interestingly, these aftereffects led to an increase in peak ankle dorsiflexion of approximately 7° during the swing phase. CONCLUSIONS: Walking while resisting a torque perturbation applied at the ankle during swing promotes an increase in TA muscle activation that carries over after perturbation removal, leading to an increased ankle dorsiflexion. Training based on this approach may have the potential of improving the gait of persons with foot drop.


Asunto(s)
Articulación del Tobillo/fisiología , Marcha/fisiología , Caminata/fisiología , Adaptación Fisiológica , Adulto , Fenómenos Biomecánicos , Electromiografía , Trastornos Neurológicos de la Marcha/rehabilitación , Humanos , Articulación de la Rodilla/fisiología , Músculo Esquelético/fisiología , Aparatos Ortopédicos , Torque
18.
IEEE Trans Neural Syst Rehabil Eng ; 16(4): 390-9, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18701385

RESUMEN

The control of human walking can be temporarily modified by applying forces to the leg. To study the neural mechanisms underlying this adaptive capacity, a device delivering controlled forces and high-velocity displacements to the ankle was designed. A new solution, involving a closed circuit hydraulic system composed of two cylinders (master-slave) mutually connected by hoses and controlled by an electric motor was preferred over classical mechanical/electrical approaches. The slave cylinder delivers desired torques to the ankle using a light weight, custom-designed ankle-foot orthosis. This electrohydraulic orthosis (EHO) can produce several types of force fields during walking, including constant, position-dependent, and phase-dependent. With phase-dependent force fields, active torque cancellation maintains low-residual torques ( < or = 1.85 Nm root mean square) outside of the zone of force application for walking speeds ranging from 0.2 to 4.5 km/h. Rapid ankle stretches/unloads ( > 200 degrees/s) can also be produced alone or during force field application, and elicited proprioceptive reflexes in ankle muscles. In conclusion, the EHO is capable of delivering controlled force fields and of activating proprioceptive reflexes during human walking. It will provide the flexibility needed to test the adaptability of healthy and pathological gait control, and to address some of its underlying neural mechanisms.


Asunto(s)
Tobillo/inervación , Tobillo/fisiología , Fenómenos Biomecánicos/instrumentación , Aparatos Ortopédicos , Examen Físico/instrumentación , Propiocepción/fisiología , Caminata/fisiología , Adulto , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Persona de Mediana Edad , Estimulación Física/instrumentación , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...